Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
1.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38117256

RESUMO

Mucosal-associated invariant T (MAIT) cells harbor evolutionarily conserved TCRs, suggesting important functions. As human and mouse MAIT functional programs appear distinct, the evolutionarily conserved MAIT functional features remain unidentified. Using species-specific tetramers coupled to single-cell RNA sequencing, we characterized MAIT cell development in six species spanning 110 million years of evolution. Cross-species analyses revealed conserved transcriptional events underlying MAIT cell maturation, marked by ZBTB16 induction in all species. MAIT cells in human, sheep, cattle, and opossum acquired a shared type-1/17 transcriptional program, reflecting ancestral features. This program was also acquired by human iNKT cells, indicating common differentiation for innate-like T cells. Distinct type-1 and type-17 MAIT subsets developed in rodents, including pet mice and genetically diverse mouse strains. However, MAIT cells further matured in mouse intestines to acquire a remarkably conserved program characterized by concomitant expression of type-1, type-17, cytotoxicity, and tissue-repair genes. Altogether, the study provides a unifying view of the transcriptional features of innate-like T cells across evolution.


Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Bovinos , Animais , Camundongos , Ovinos , Diferenciação Celular , Membrana Celular , 60562 , Especificidade da Espécie , Mamíferos/genética
3.
Front Immunol ; 14: 1224383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38146368

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major health issue primarily caused by cigarette smoke (CS) and characterized by breathlessness and repeated airway inflammation. NLRP6 is a cytosolic innate receptor controlling intestinal inflammation and orchestrating the colonic host-microbial interface. However, its roles in the lungs remain largely unexplored. Using CS exposure models, our data show that airway inflammation is strongly impaired in Nlrp6-deficient mice with drastically fewer recruited neutrophils, a key cell subset in inflammation and COPD. We found that NLRP6 expression in lung epithelial cells is important to control airway and lung tissue inflammation in an inflammasome-dependent manner. Since gut-derived metabolites regulate NLRP6 inflammasome activation in intestinal epithelial cells, we investigated the link between NLRP6, CS-driven lung inflammation, and gut microbiota composition. We report that acute CS exposure alters gut microbiota in both wild-type (WT) and Nlrp6-deficient mice and that antibiotic treatment decreases CS-induced lung inflammation. In addition, gut microbiota transfer from dysbiotic Nlrp6-deficient mice to WT mice decreased airway lung inflammation in WT mice, highlighting an NLRP6-dependent gut-to-lung axis controlling pulmonary inflammation.


Assuntos
Microbioma Gastrointestinal , Pneumonia , Receptores de Superfície Celular , Poluição por Fumaça de Tabaco , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/microbiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/patologia , Fezes/microbiologia , Bactérias/classificação , Bactérias/metabolismo , Biodiversidade , Expressão Gênica
4.
Trends Immunol ; 44(12): 1014-1030, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951789

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fatal chronic interstitial lung disease (ILD) that affects lung mechanical functions and gas exchange. IPF is caused by increased fibroblast activity and collagen deposition that compromise the alveolar-capillary barrier. Identifying an effective therapy for IPF remains a clinical challenge. Chemokines are key proteins in cell communication that have functions in immunity as well as in tissue homeostasis, damage, and repair. Chemokine receptor signaling induces the activation and proliferation of lung-resident cells, including alveolar macrophages (AMs) and fibroblasts. AMs are an important source of chemokines and cytokines during IPF. We highlight the complexity of this system and, based on insights from genetic and transcriptomic studies, propose a new role for homeostatic chemokine imbalance in IPF, with implications for putative therapeutic targets.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/etiologia , Fibrose Pulmonar Idiopática/metabolismo , Quimiocinas/metabolismo , Macrófagos Alveolares , Citocinas/metabolismo , Transdução de Sinais , Pulmão
5.
Front Immunol ; 14: 1261483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841243

RESUMO

Introduction: The pathogenesis of chronic lung diseases is multifaceted with a major role of recurrent micro-injuries of the epithelium. While several reports clearly indicated a prominent role for surfactant-producing alveolar epithelial type 2 (AT2) cells, the contribution of gas exchange-permissive alveolar epithelial type 1 (AT1) cells has not been addressed yet. Here, we investigated whether repeated injury of AT1 cells leads to inflammation and interstitial fibrosis. Methods: We chose an inducible model of AT1 cell depletion following local diphtheria toxin (DT) administration using an iDTR flox/flox (idTRfl/fl) X Aquaporin 5CRE (Aqp5CRE) transgenic mouse strain. Results: We investigated repeated doses and intervals of DT to induce cell death of AT1 cells causing inflammation and interstitial fibrosis. We found that repeated DT administrations at 1ng in iDTRfl/fl X Aqp5CRE mice cause AT1 cell death leading to inflammation, increased tissue repair markers and interstitial pulmonary fibrosis. Discussion: Together, we demonstrate that depletion of AT1 cells using repeated injury represents a novel approach to investigate chronic lung inflammatory diseases and to identify new therapeutic targets.


Assuntos
Pneumonia , Relesões , Camundongos , Animais , Camundongos Transgênicos , Inflamação , Fibrose , Morte Celular
6.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37698938

RESUMO

Unabated activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is linked with the pathogenesis of various inflammatory disorders. Polo-like kinase 1 (PLK1) has been widely studied for its role in mitosis. Here, using both pharmacological and genetic approaches, we demonstrate that PLK1 promoted NLRP3 inflammasome activation at cell interphase. Using an unbiased proximity-dependent biotin identification (Bio-ID) screen for the PLK1 interactome in macrophages, we show an enhanced proximal association of NLRP3 with PLK1 upon NLRP3 inflammasome activation. We further confirmed the interaction between PLK1 and NLRP3 and identified the interacting domains. Mechanistically, we show that PLK1 orchestrated the microtubule-organizing center (MTOC) structure and NLRP3 subcellular positioning upon inflammasome activation. Treatment with a selective PLK1 kinase inhibitor suppressed IL-1ß production in in vivo inflammatory models, including LPS-induced endotoxemia and monosodium urate-induced peritonitis in mice. Our results uncover a role of PLK1 in regulating NLRP3 inflammasome activation during interphase and identify pharmacological inhibition of PLK1 as a potential therapeutic strategy for inflammatory diseases with excessive NLRP3 inflammasome activation.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ciclo Celular/genética , Interleucina-1beta/genética , Camundongos Endogâmicos C57BL
7.
Nat Commun ; 14(1): 4906, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582777

RESUMO

Changes of mRNA 3'UTRs by alternative polyadenylation (APA) have been associated to numerous pathologies, but the mechanisms and consequences often remain enigmatic. By combining transcriptomics, proteomics and recombinant viruses we show that all tested strains of IAV, including A/PR/8/34(H1N1) (PR8) and A/Cal/07/2009 (H1N1) (Cal09), cause APA. We mapped the effect to the highly conserved glycine residue at position 184 (G184) of the viral non-structural protein 1 (NS1). Unbiased mass spectrometry-based analyses indicate that NS1 causes APA by perturbing the function of CPSF4 and that this function is unrelated to virus-induced transcriptional shutoff. Accordingly, IAV strain PR8, expressing an NS1 variant with weak CPSF binding, does not induce host shutoff but only APA. However, recombinant IAV (PR8) expressing NS1(G184R) lacks binding to CPSF4 and thereby also the ability to cause APA. Functionally, the impaired ability to induce APA leads to an increased inflammatory cytokine production and an attenuated phenotype in a mouse infection model. Investigating diverse viral infection models showed that APA induction is a frequent ability of many pathogens. Collectively, we propose that targeting of the CPSF complex, leading to widespread alternative polyadenylation of host transcripts, constitutes a general immunevasion mechanism employed by a variety of pathogenic viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Animais , Camundongos , Vírus da Influenza A/genética , Regiões 3' não Traduzidas/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Poliadenilação , Virulência/genética , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
8.
J Invest Dermatol ; 143(9): 1678-1688.e8, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36921684

RESUMO

Psoriasis is a chronic inflammatory skin disorder driven by the IL-23/type 3 immune response. However, molecular mechanisms sustaining the chronicity of inflammation and psoriatic lesions remain elusive. Combining systematic analyses of several transcriptomic datasets, we delineated gene signatures across human psoriatic skin, identifying S100A9 as one of the most up-regulated genes, which was confirmed in lesioned skin from patients with psoriasis and preclinical psoriasiform skin inflammation models. Genetic ablation or pharmacologic inhibition of S100A9 alleviated Aldara-induced skin inflammation. By single-cell mapping of human psoriatic skin and bone marrow chimeric mice experiments, we identified keratinocytes as the major source of S100A9. Mechanistically, S100A9 induced IL-23 production by dendritic cells, driving the IL-23/type 3 immunity in psoriasiform skin inflammation. In addition, the cutaneous IL-23/IL-17 axis induced epidermal S100A9 expression in human and experimental psoriasis. Thus, we showed an autoregulatory circuit between keratinocyte-derived S100A9 and IL-23/type 3 immunity during psoriasiform inflammation, identifying a crucial function of S100A9 in the chronification of psoriasis.


Assuntos
Psoríase , Humanos , Animais , Camundongos , Pele/patologia , Queratinócitos/metabolismo , Inflamação/patologia , Calgranulina B/genética , Interleucina-23/genética , Interleucina-23/metabolismo , Modelos Animais de Doenças
9.
bioRxiv ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36798300

RESUMO

Senescence is a cellular aging-related process triggered by different stresses and characterized by the secretion of various inflammatory factors referred to as the senescence-associated secretory phenotype (SASP). Here, we present evidence that the inflammasome sensor, NLRP1, is a key mediator of senescence induced by irradiation both in vitro and in vivo. The NLRP1 inflammasome promotes senescence by regulating the expression of p16, p21, p53, and SASP in Gasdermin D (GSDMD)-dependent manner as these responses are reduced in conditions of NLRP1 insufficiency or GSDMD inhibition. Mechanistically, the NLRP1 inflammasome is activated downstream of the cytosolic DNA sensor cGMP-AMP (cGAMP) synthase (cGAS) in response to genomic damage. These findings provide a rationale for inhibiting the NLRP1 inflammasome-GSDMD axis to treat senescence-driven disorders.

10.
Arch Toxicol ; 97(4): 1001-1015, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840754

RESUMO

IL-1α is an intracellular danger signal (DAMP) released by macrophages contributing to the development of silica-induced lung inflammation. The exact molecular mechanism orchestrating IL-1α extracellular release from particle-exposed macrophages is still unclear. To delineate this process, murine J774 and bone-marrow derived macrophages were exposed to increasing concentrations (1-40 cm2/ml) of a set of amorphous and crystalline silica particles with different surface chemical features. In particular, these characteristics include the content of nearly free silanols (NFS), a silanol population responsible for silica cytotoxicity recently identified. We first observed de novo stocks of IL-1α in macrophages after silica internalization regardless of particle physico-chemical characteristics and cell stress. IL-1α intracellular production and accumulation were observed by exposing macrophages to biologically-inert or cytotoxic crystalline and amorphous silicas. In contrast, only NFS-rich reactive silica particles triggered IL-1α release into the extracellular milieu from necrotic macrophages. We demonstrate that IL-1α is actively secreted through the formation of gasdermin D (GSDMD) pores in the plasma membrane and not passively released after macrophage plasma membrane lysis. Our findings indicate that the GSDMD pore-dependent secretion of IL-1α stock from macrophages solely depends on cytotoxicity induced by NFS-rich silica. This new regulated process represents a key first event in the mechanism of silica toxicity, suitable to refine the existing adverse outcome pathway (AOP) for predicting the inflammatory activity of silicas.


Assuntos
Gasderminas , Macrófagos , Camundongos , Animais , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Necrose , Dióxido de Silício/química
11.
J Crohns Colitis ; 17(1): 111-122, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35917251

RESUMO

BACKGROUND AND AIMS: NOD2 has emerged as a critical player in the induction of both Th1 and Th2 responses for potentiation and polarisation of antigen-dependent immunity. Loss-of-function mutations in the NOD2-encoding gene and deregulation of its downstream signalling pathway have been linked to Crohn's disease. Although it is well documented that NOD2 is capable of sensing bacterial muramyl dipeptide, it remains counter-intuitive to link development of overt intestinal inflammation to a loss of bacterial-induced inflammatory response. We hypothesised that a T helper bias could also contribute to an autoimmune-like colitis different from inflammation that is fully fledged by Th1 type cells. METHODS: An oedematous bowel wall with a mixed Th1/Th2 response was induced in mice by intrarectal instillation of the haptenating agent oxazolone. Survival and clinical scoring were evaluated. At several time points after instillation, colonic damage was assessed by macroscopic and microscopic observations. To evaluate the involvement of NOD2 in immunochemical phenomena, quantitative polymerase chain reaction [PCR] and flow cytometry analysis were performed. Bone marrow chimera experimentation allowed us to evaluate the role of haematopoietic/non-hematopoietic NOD2-expressing cells. RESULTS: Herein, we identified a key regulatory circuit whereby NOD2-mediated sensing of a muramyl dipeptide [MDP] by radio-resistant cells improves colitis with a mixed Th1/Th2 response that is induced by oxazolone. Genetic ablation of either Nod2 or Ripk2 precipitated oxazolone colitis that is predominantly linked to a lack of interferon-gamma. Bone marrow chimera experiments revealed that inactivation of Nod2 signalling in non-haematopoietic cells is causing a biased M1-M2 polarisation of macrophages and a decreased frequency of splenic regulatory T cells that correlates with an impaired activation of CD4 + T cells within mesenteric lymph nodes. Mechanistically, mice were protected from oxazolone-induced colitis upon administration of MDP in an interleukin-1- and interleukin-23-dependent manner. CONCLUSIONS: These findings indicate that Nod2 signalling may prevent pathological conversion of T helper cells for maintenance of tissue homeostasis.


Assuntos
Colite , Oxazolona , Camundongos , Animais , Oxazolona/efeitos adversos , Acetilmuramil-Alanil-Isoglutamina/efeitos adversos , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Colite/metabolismo , Inflamação , Transdução de Sinais , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo
12.
Biochim Biophys Acta Mol Basis Dis ; 1869(2): 166592, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36328146

RESUMO

SARS-CoV-2 remains an acute threat to human health, endangering hospital capacities worldwide. Previous studies have aimed at informing pathophysiologic understanding and identification of disease indicators for risk assessment, monitoring, and therapeutic guidance. While findings start to emerge in the general population, observations in high-risk patients with complex pre-existing conditions are limited. We addressed the gap of existing knowledge with regard to a differentiated understanding of disease dynamics in SARS-CoV-2 infection while specifically considering disease stage and severity. We biomedically characterized quantitative proteomics in a hospitalized cohort of COVID-19 patients with mild to severe symptoms suffering from different (co)-morbidities in comparison to both healthy individuals and patients with non-COVID related inflammation. Deep clinical phenotyping enabled the identification of individual disease trajectories in COVID-19 patients. By the use of the individualized disease phase assignment, proteome analysis revealed a severity dependent general type-2-centered host response side-by-side with a disease specific antiviral immune reaction in early disease. The identification of phenomena such as neutrophil extracellular trap (NET) formation and a pro-coagulatory response characterizing severe disease was successfully validated in a second cohort. Together with the regulation of proteins related to SARS-CoV-2-specific symptoms identified by proteome screening, we not only confirmed results from previous studies but provide novel information for biomarker and therapy development.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Antivirais , Proteoma/metabolismo , Proteômica
13.
Front Nutr ; 9: 1011732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337621

RESUMO

Short-chain fatty acids (SCFAs) are metabolites released by bacterial components of the microbiota. These molecules have a wide range of effects in the microbiota itself, but also in host cells in which they are known for contributing to the regulation of cell metabolism, barrier function, and immunological responses. Recent studies indicate that these molecules are important players in the gut-lung axis and highlight the possibility of using strategies that alter their intestinal production to prevent or treat distinct lung inflammatory diseases. Here, we review the effects of the SCFA butyrate and its derivatives in vitro and in vivo on murine models of respiratory disorders, besides discussing the potential therapeutic use of butyrate and the other SCFAs in lung diseases.

14.
Front Immunol ; 13: 984045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268013

RESUMO

IL-1 plays a crucial role in triggering sterile inflammation following tissue injury. Although most studies associate IL-1 release by injured cells to the recruitment of neutrophils for tissue repair, the inflammatory cascade involves several molecular and cellular actors whose role remains to be specified. In the present study, we identified dermal fibroblasts among the IL-1R1-expressing skin cells as key sensors of IL-1 released by injured keratinocytes. After in vitro stimulation by recombinant cytokines or protein extracts of lysed keratinocytes containing high concentrations of IL-1, we show that dermal fibroblasts are by far the most IL-1-responsive cells compared to keratinocytes, melanocytes and endothelial cells. Fibroblasts have the property to respond to very low concentrations of IL-1 (from 10 fg/ml), even in the presence of 100-fold higher concentrations of IL-1RA, by increasing their expression of chemokines such as IL-8 for neutrophil recruitment. The capacity of IL-1-stimulated fibroblasts to attract neutrophils has been demonstrated both in vitro using cell migration assay and in vivo using a model of superficial epidermal lesion in IL-1R1-deficient mice which harbored reduced expression of inflammatory mediators and neutrophil skin infiltration. Together, our results shed a light on dermal fibroblasts as key relay cells in the chain of sterile inflammation induced after epidermal lesion.


Assuntos
Dermatite , Interleucina-1 , Camundongos , Animais , Interleucina-1/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Interleucina-8/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Queratinócitos/metabolismo , Dermatite/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo
15.
Front Immunol ; 13: 984016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275755

RESUMO

Introduction: Although the presence of pathogens in skin wounds is known to delay the wound healing process, the mechanisms underlying this delay remain poorly understood. In the present study, we have investigated the regulatory role of proinflammatory cytokines on the healing kinetics of infected wounds. Methods: We have developed a mouse model of cutaneous wound healing, with or without wound inoculation with Staphylococcus aureus and Pseudomonas aeruginosa, two major pathogens involved in cutaneous wound bacterial infections. Results: Aseptic excision in C57BL/6 mouse skin induced early expression of IL-1ß, TNFα and Oncostatin M (OSM), without detectable expression of IL-22 and IL-17A/F. S. aureus and P. aeruginosa wound inoculation not only increased the expression of IL-1ß and OSM, but also induced a strong cutaneous expression of IL-22, IL-17A and IL-17F, along with an increased number of infiltrating IL-17A and/or IL-22-producing γδ T cells. The same cytokine expression pattern was observed in infected human skin wounds. When compared to uninfected wounds, mouse skin infection delayed the wound healing process. Injection of IL-1α, TNFα, OSM, IL-22 and IL-17 together in the wound edges induced delayed wound healing similar to that induced by the bacterial infection. Wound healing experiments in infected Rag2KO mice (deficient in lymphocytes) showed a wound healing kinetic similar to uninfected Rag2KO mice or WT mice. Rag2KO infected-skin lesions expressed lower levels of IL-17 and IL-22 than WT, suggesting that the expression of these cytokines is mainly dependent on γδ T cells in this model. Wound healing was not delayed in infected IL-17R/IL-22KO, comparable to uninfected control mice. Injection of recombinant IL-22 and IL-17 in infected wound edges of Rag2KO mice re-establish the delayed kinetic of wound healing, as in infected WT mice. Conclusion: These results demonstrate the synergistic and specific effects of IL-22 and IL-17 induced by bacterial infection delay the wound healing process, regardless of the presence of bacteria per se. Therefore, these cytokines play an unexpected role in delayed skin wound healing.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pseudomonas aeruginosa , Camundongos , Humanos , Animais , Pseudomonas aeruginosa/metabolismo , Interleucina-17/metabolismo , Staphylococcus aureus/metabolismo , Fator de Necrose Tumoral alfa , Oncostatina M , Staphylococcus aureus Resistente à Meticilina/metabolismo , Camundongos Endogâmicos C57BL
16.
Sci Rep ; 12(1): 17591, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266398

RESUMO

Live biotherapeutic products constitute an emerging therapeutic approach to prevent or treat inflammatory bowel diseases. Lactobacillus acidophilus is a constituent of the human microbiota with probiotic potential, that is illustrated by improvement of intestinal inflammation and antimicrobial activity against several pathogens. In this study, we evaluated the immunomodulatory properties of the L. acidophilus strain BIO5768 at steady state and upon acute inflammation. Supplementation of naïve mice with BIO5768 heightened the transcript level of some IL-17 target genes encoding for protein with microbicidal activity independently of NOD2 signaling. Of these, the BIO5768-induced expression of Angiogenin-4 was blunted in monocolonized mice that are deficient for the receptor of IL-17 (but not for NOD2). Interestingly, priming of bone marrow derived dendritic cells by BIO5768 enhanced their ability to support the secretion of IL-17 by CD4+ T cells. Equally of importance, the production of IL-22 by type 3 innate lymphoid cells is concomitantly heightened in response to BIO5768. When administered alone or in combination with Bifidobacterium animalis spp. lactis BIO5764 and Limosilactobacillus reuteri, BIO5768 was able to alleviate at least partially intestinal inflammation induced by Citrobacter rodentium infection. Furthermore, BIO5768 was also able to improve colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS). In conclusion, we identify a new potential probiotic strain for the management of inflammatory bowel diseases, and provide some insights into its IL-17-dependent and independent mode of action.


Assuntos
Colite , Imunidade Inata , Doenças Inflamatórias Intestinais , Lactobacillus acidophilus , Probióticos , Animais , Camundongos , Bifidobacterium animalis , Colite/induzido quimicamente , Colite/terapia , Colite/microbiologia , Infecções por Enterobacteriaceae/terapia , Inflamação , Doenças Inflamatórias Intestinais/terapia , Interleucina-17 , Linfócitos , Probióticos/farmacologia , Probióticos/uso terapêutico , Ácido Trinitrobenzenossulfônico/efeitos adversos
17.
Front Immunol ; 13: 918507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36045672

RESUMO

Chronic pulmonary inflammation and chronic obstructive pulmonary disease (COPD) are major health issues largely due to air pollution and cigarette smoke (CS) exposure. The role of the innate receptor NLRP3 (nucleotide-binding domain and leucine-rich repeat containing protein 3) orchestrating inflammation through formation of an inflammasome complex in CS-induced inflammation or COPD remains controversial. Using acute and subchronic CS exposure models, we found that Nlrp3-deficient mice or wild-type mice treated with the NLRP3 inhibitor MCC950 presented an important reduction of inflammatory cells recruited into the bronchoalveolar space and of pulmonary inflammation with decreased chemokines and cytokines production, in particular IL-1ß demonstrating the key role of NLRP3. Furthermore, mice deficient for Caspase-1/Caspase-11 presented also decreased inflammation parameters, suggesting a role for the NLRP3 inflammasome. Importantly we showed that acute CS-exposure promotes NLRP3-dependent cleavage of gasdermin D in macrophages present in the bronchoalveolar space and in bronchial airway epithelial cells. Finally, Gsdmd-deficiency reduced acute CS-induced lung and bronchoalveolar space inflammation and IL-1ß secretion. Thus, we demonstrated in our model that NLRP3 and gasdermin D are key players in CS-induced pulmonary inflammation and IL-1ß release potentially through gasdermin D forming-pore and/or pyroptoctic cell death.


Assuntos
Fumar Cigarros , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Animais , Caspase 1/metabolismo , Fumar Cigarros/efeitos adversos , Células Epiteliais/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , /metabolismo
18.
Front Immunol ; 13: 893844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711456

RESUMO

Acetylcholine (ACh) from neuronal and non-neuronal sources plays an important role in the regulation of immune responses and is associated with the development of several disease pathologies. We have previously demonstrated that group 2 innate lymphoid cell (ILC2)-derived ACh is required for optimal type 2 responses to parasitic infection and therefore sought to determine whether this also plays a role in allergic inflammation. RoraCre+ChatLoxP mice (in which ILC2s cannot synthesize ACh) were exposed to an allergenic extract of the fungus Alternaria alternata, and immune responses in the airways and lung tissues were analyzed. Airway neutrophilia and expression of the neutrophil chemoattractants CXCL1 and CXCL2 were enhanced 24 h after exposure, suggesting that ILC2-derived ACh plays a role in limiting excessive pulmonary neutrophilic inflammation. The effect of non-selective depletion of ACh was examined by intranasal administration of a stable parasite-secreted acetylcholinesterase. Depletion of airway ACh in this manner resulted in a more profound enhancement of neutrophilia and chemokine expression, suggesting multiple cellular sources for the release of ACh. In contrast, depletion of ACh inhibited Alternaria-induced activation of ILC2s, suppressing the expression of IL-5, IL-13, and subsequent eosinophilia. Depletion of ACh reduced macrophages with an alternatively activated M2 phenotype and an increase in M1 macrophage marker expression. These data suggest that ACh regulates allergic airway inflammation in several ways, enhancing ILC2-driven eosinophilia but suppressing neutrophilia through reduced chemokine expression.


Assuntos
Eosinofilia , Pneumonia , Acetilcolina/farmacologia , Acetilcolinesterase/metabolismo , Animais , Imunidade Inata , Inflamação/metabolismo , Interleucina-33/metabolismo , Pulmão , Linfócitos , Camundongos
19.
Cells ; 11(9)2022 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-35563744

RESUMO

Study of the initial steps of the CD95-mediated signaling pathways is a field of intense research and a long list of actors has been described in the literature. Nonetheless, the dynamism of protein-protein interactions (PPIs) occurring in the presence or absence of its natural ligand, CD95L, and the cellular distribution where these PPIs take place render it difficult to predict what will be the cellular outcome associated with the receptor engagement. Accordingly, CD95 stimulation can trigger apoptosis, necroptosis, pyroptosis, or pro-inflammatory signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and phosphatidylinositol-3-kinase (PI3K). Recent data suggest that CD95 can also activate pattern recognition receptors (PRRs) known to sense damage-associated molecular patterns (DAMPs) such as DNA debris and dead cells. This activation might contribute to the pro-inflammatory role of CD95 and favor cancer development or severity of chronic inflammatory and auto-immune disorders. Herein, we discuss some of the molecular links that might connect the CD95 signaling to DAMP sensors.


Assuntos
Transdução de Sinais , Receptor fas , Alarminas , Apoptose/fisiologia , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Receptor fas/metabolismo
20.
Allergy ; 77(11): 3320-3336, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35615773

RESUMO

BACKGROUND: Inflammasomes are large protein complexes that assemble in the cytosol in response to danger such as tissue damage or infection. Following activation, inflammasomes trigger cell death and the release of biologically active forms of pro-inflammatory cytokines interleukin (IL)-1ß and IL-18. NOD-like receptor family pyrin domain containing 6 (NLRP6) inflammasome is required for IL-18 secretion by intestinal epithelial cells, macrophages, and T cells, contributing to homeostasis and self-defense against pathogenic microbes. However, the involvement of NLRP6 in type 2 lung inflammation remains elusive. METHODS: Wild-type (WT) and Nlrp6-/- mice were used. Birch pollen extract (BPE)-induced allergic lung inflammation, eosinophil recruitment, Th2-related cytokine and chemokine production, airway hyperresponsiveness, and lung histopathology, Th2 cell differentiation, GATA3, and Th2 cytokines expression, were determined. Nippostrongylus brasiliensis (Nb) infection, worm count in intestine, type 2 innate lymphoid cell (ILC2), and Th2 cells in lungs were evaluated. RESULTS: We demonstrate in Nlrp6-/- mice that a mixed Th2/Th17 immune responses prevailed following birch pollen challenge with increased eosinophils, ILC2, Th2, and Th17 cell induction and reduced IL-18 production. Nippostrongylus brasiliensis infected Nlrp6-/- mice featured enhanced early expulsion of the parasite due to enhanced type 2 immune responses compared to WT hosts. In vitro, NLRP6 repressed Th2 polarization, as shown by increased Th2 cytokines and higher expression of the transcription factor GATA3 in the absence of NLRP6. Exogenous IL-18 administration partially reduced the enhanced airways inflammation in Nlrp6-/- mice. CONCLUSIONS: In summary, our data identify NLRP6 as a negative regulator of type 2 immune responses.


Assuntos
Imunidade Inata , Pneumonia , Animais , Camundongos , Citocinas/metabolismo , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Linfócitos , Camundongos Knockout , Nippostrongylus , Pneumonia/metabolismo , Células Th2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...